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Current economic, environmental and technological trends lead
to a whole reform of the energy system, towards multiple small-
scale cleaner and local energy generation sources
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The techno-economic characteristics of DER units went through
significant improvements during the last decade
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aCost includes total equipment cost plus installation labor and AN
materials, engineering, project management, and financial carrying 5200
costs during the construction period.
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Microgrid concept as a novel alternative

Special attention has been drawn to the microgrid solution

A localized and organized
group of interconnected loads
and DER, which acts as a

single entity with respect to the

grid, and is able to operate in
both grid-connected or
islanded modes.

U.S. Department of Energy
Microgrid Exchange Group
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Advantages of Microgrids

Microgrids can constitute part of the solution for the current
unsustainability of the legacy grid

-Provide high PQR to satisfy
critical loads of sensitive sites
-Enhance the resilience of the
power system as a whole

- Increased local control
-Possibility of usage of waste
heat from CHP and CCHP DG
-Promotion of renewable DGs

Bob Lasseter said at the time: "Nothing happened." The system moved

'RedUCtlonS n COZ P automatically between grid-connected mode and island-mode without a glitch.
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What are Smart Cities after all?

A result of the increasing importance and integration of ICTs
in the fundamental functions of modern cities
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Microgrids as building blocks of the Smart Grid

Microgrids are the third element of the Smart Grid, together with
1. Improved macrogrid operation, and

2. enhanced grid-demand interaction
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Local power generation with microgrids showed the benefits of

reliability during Hurricane Sandly.
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Community-scale power systems that meet the requirements for
a microgrid, or “milligrids” where numerous types of demand
meet, can potentially increase microgrids’ benefits by making
use of synergies between different kinds of customers
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opportunity to explore demand patterns

About 30% of World microgrid
MIT pilots are community-scale



What circumstances can make community-scale microgrids
attractive investments in the urban context?

his research intents to fill the gap of sectorial regulatory and
policy directions for a rapidly-emerging microgrid market and
to sustain future planning and deployment decisions.
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Extension of DER-CAM to accommodate optimization of
community-scale, multiple-building microgrids
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Case-study applications

The analysis of microgrids economic adoption patterns is done
for different contexts

USA: Load data based on the compiled U.S.
Department of Energy (DOE) commercial
reference buildings models

1 slan
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Portugal: Data
treatment work in %
collaboration ’

S i& with several
energy services

MIT Portuga companies
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Description of the U.S. case-study

= Runs in 8 representative cities, located in each one of the U.S.
climate zones, developed by ASHRAE

= The commercial and residential prototype buildings models
were simulated in EnergyPlus in order to obtain the final DER-
CAM load profiles

Representative city State Climate Zone
Miami Florida 1A

Phoenix Arizona 2B

Los Angeles California 3B — Coast
Albuquerque New Mexico 4B

Chicago [llinois SA

Helena Montana 6B

Duluth Minnesota TA

Fairbanks Alaska 8A

MIT



U.S. case-study, climatic and regulatory diversity
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Optimal technology mix of large microgrid adoption solutions in U.S. representative cities

ICE PV ST ES Abs Switch ICE PV ST ES Abs Switch
(kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kW)
Albuquerque Helena
RES 810 (CHP) 0 0 0 898 130 RES 500 (CHP) 0 0 0 342 116
SRV 310 (CHP) 4 0 0 189 67 SRV 120 (CHP) 0 0 0 0 62
OFF 1000 (CHP) 279 0 0 517 445 OFF 500 (CHP) 0 0 5 293 427
HOSP 500 (CHP) 115 0 0 208 472 HOSP 500 (CHP) 0 0 0 108 441
Chicago Los Angeles
RES I SOOiCHPE ] 0 0 0 78 159 RES 1000 (CHP) 0 0 0 662 135
SRV 60 (CHP 39 0 0 0 67 SRV 370 (CHP) 0 0 0 266 77
OFF I 560:CHPE j 0 0 0 124 516 OFF 1120 (CHP) 0 0 0 616 449
HOSP 560 (CHP) 0 0 0 85 525 HOSP 620 (CHP) 0 0 0 208 558
Duluth Miami
RES 120 (CHP) 0 0 89 0 128 RES 250 (CHP) 0 53 0 375 167
SRV 60 (CHP) 0 0 54 0 66 SRV 60 (CHP) 0 49 155 104 80
Fairbanks OFF 250 (CHP) 0 45 138 257 260
RES 810 (CHP) 0 0 0 300 91 Phoenix
SRV 310 (CHP) 0 0 162 37 54 RES I 250 iCHPi 0 0 571 174
OFF 1060 (CHP) 0 0 162 371 414 SRV 60 (CHP 79 0 111 132 93
HOSP 560 (CHP) 0 0 0 130 408 OFF I 500 :( HP: j 227 0 0 336 535
HOSP 560 (CHP) 109 0 290 125 606

= All runs invest in CHP ICEs, in RES areas to cover very high

heating needs of apartments, schools and restaurants

» OFF and HOSP, reliability-intense areas, invest more in DER
capacity and with less climate sensitivity than RES and SRV

MIT



MIT

Annual percent energy cost savings

TOU

Annual energy savings from milligrids adoption in selected U.S. cities

PQR costs in OFF
and HOSP
microgrids sum up
for over 50KkS, i.e.
there is a balance
between microgrid

] capabilities costs

and PQR benefits.

FLAT

TOU

The structure and pricing
of electricity tariffs as the
cost of NG prevail over
climate in determining
milligrids adoption

TOU

B RES

OSRV @ZOFF @HOSP




40%

= Limited investments and
savings in cities with
cheap electricity,
expensive NG or no TOU

= Helena, Miami, Duluth o
With SaVingS <1O%, 5% ¥ BRES :SRV COFF zHo::

25%
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15% -

Annual percent energy cost saving
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= Warmer vs. colder climates: Group composed of
Albugquerque, Los Angeles, Miami and Phoenix with average
energy cost saving of 18% against 13% for the group
composed of Chicago, Duluth, Fairbanks and Helena
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Spark spread vs. savings analysis for large microgrids adoption in U.S. representative cities.
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= DER-CAM models were created that reflect technological,
environmental and market conditions in Lisbon, Portugal

= Collection of residential and commercial buildings load data in
the region of Lisbon and creation of typical building profiles

= The simulation tools Visual DOE 4.1.2 and E+ are used to run
building models and obtain hourly reports, inputs to DER-CAM

Building simulation | ° Heatingand cooling loads
Energy » tool (Visual DOE 4.0) Eq ipment, lighting,
aUditS TRY hourly reports nilaion and pumping loads
H t water and NG loads ) —
tal load (for sizing) \-‘-.— e —

(for each building)
¥
n w’%
- '
- . . * Building size ranking Kﬁ~
Building simulation rding to peak power v

according ‘
(SMALL, MEDIUM, LARGE) % /
* Agr ar-size e z_,wnl_‘_‘ i X -_T-r::;- L 1 .
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Four distinct building types and a residential area are analyzed

In order to access microgrid customer adoption patterns

RES HTL SCH OFF HOSP
Electrical peak load (kW) 769 830 896 968 1207
Electrical load factor (%) 12% 33% 20% 36% 50%
HPR (%) 55% 17% 46% 11% 20%
Heat/Elec. Coincidence (%) 27% 13% 20% 11% 20%
0:9 LiSbon: 025 Winter TOU ta riff 20.0
20 | 0.4kW/m? 0.20
g, Winter D £ -
e to e Zo1s E
L5 0.9kW/m? B Bo.10 :
£o4 ' Summer B g a
';',,0,3 September 0.05
o
011 December 12345678 9101112131415161718192021222324
2 345 6 7 8 01011121314 15 16 17 18 19 20 21 22 23 24 ui=s TOU Energy Charge  «+--»+ NG Energy Charge

Hour of the day e TOU Demand Charge
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Optimal technology mix of microgrid adoption solutions in Lisbon

ICE PV ST ES HS Abs  Switch
kW) (kW) (kW) (kW) (kW) (kW) (KW)

RES 0 51 17 55 0 0 18
RES+SCH 60 (CHP) 335 83 0 0 260 110
RES+HTL 250 (CHP) 222 146 0 449 116 104
RES+OFF 250 (CHP) 489 08 0 455 222 283
RES+HOSP 500 (CHP) + 60 693 200 77 507 140 691
SCH 0 | 291 73 217 0 249 | 92
SCH+HTL 250 (CHP) 593 160 0 473 372 178
SCH+OFF 250 (CHP) 697 145 0 553 503 356
SCH+HOSP 750 (CHP) 443 257 0 645 516 765
HTL 0 | 351 61 359 0 64 | 86
HTL+OFF 250 (CHP) 701 123 0 490 302 351
HTL-+HOSP 750 (CHP) 577 246 0 582 320 759
QEE 250 (CHP) 361 10 0 0 258 265
OFF+HOSP 750 (CHP) | 1058 153 0 477 399 938
HOSP 500 (CHP) + 60 433 247 317 868 128 673

= |nvestment in CHP ICEs, except for RES, SCH and HTL
= When high-reliability needs exist = investment in ICE capacity

MIT



Lisbon case-study, annual energy savings

vestments in

Average net saving is 11%

Bigger savings when RES
MlT areas are involved



Lisbon case-study, complementarity of loads

= Allows better use of generation assets!

900 -
RES+OFF case:

17% Savings

1234567 8 910111213141516171819 2021 2223 24
Hour of the day

MIT P( = RES+OFF  .---- Residential area ——0Office area
Example electrical daily profile
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Annual energy savings (%)
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Lisbon case-study, H./E. coincidence example

TWO peak periods:

Operation is directed
to avoid energy and
power charging
during expensive
hours of the early
morning and late
afternoon.
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Electric load factor

Example June day

700 - SCH =20% C120%

Avoidance of

600 - expensive . 100%
3 Summer

500 -
= d:ma.nd L 80%
=
2 400 charging
= - 60%
3 300 -
S
> - 40%
2200 -
= .

100 - r 2%

— \‘l
0 ..I. I [ I [ I [ .I.- I T a [ 1 T 1 [ I T T I I 1N T 0%
1 23 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24

Hour of the day

Utility electricity purchase

o Electricity generation from PV

IO Electricity provided by stationary battery = Electricity offset for absorption cooling
o «o¢ Electricity for stationary battery charging ==@=Total electrical load

Stationary battery state-of-charge
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Investment in scalable technologies such as lead-acid batteries
and PV covers the low load factors of the EDUC profile



Heat load factor

300 - —_—
RES = 6%
Heat load factor 250 -
EDUC+HLTH 13% ﬂ Usage of solar thermal to cover
OFF 20% 200 - intermitencies of demand
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Very small heat load factor of RES does not favor
MIT investments in generation units



Lisbon case-study, demand characteristics

Multiobjective analysis can provide valuable investment insights

1400 - OBSERVATIONS FROM GRAPH:
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P / between costs and GHG emissions;
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Microgrids and specifically milligrids can constitute feasible investments in the majority of
climates but are generally more attractive in warmer regions, with larger availability of DER.

The pricing and structure (TOU or flat) of tariffs as well as the energy pricing spark spread
prevail over the impact of climate as the factors mostly determining microgrids adoption.

The PQR requirements of a given urban area are a determinant of the level of adoption of
DER prime-movers and infer on the energy savings. Still, there’s a balance between costs
and benefits of PQR, allowing customers to invest economically in highly reliable microgrids.

Residential areas show increased sensitivity to climate in relation to any commercial area
and bear special interest to milligrids due to the complementary nature of its load profile. Any
other aggregation of complementary loads is in principle economically beneficial.

Office and hospital areas represent demanding, not always appealing, milligrid investments.
“Lightweight” services areas make generally attractive milligrids investments in all climates.

Hotel, residential and school buildings, where PQR needs are reduced or non-existent, are
prone to microgrid investments characterized by purchase of PV, ST and battery storage.
Offices and hospitals in opposition require the purchase of more reliable ICEs.

HPR as well as H/E coincidence can impact on technology selection and energy savings in
microgrid investments. Demand load factors can indicate in which types of DER to invest.

MIT



Conclusions

Effective design of microgrids as one fundamental g
pillar of the evolving smart infrastructure! E —

European Community SmartGrids Technology Plattform
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